翻訳と辞書
Words near each other
・ Hilbert, West Virginia
・ Hilbert, Wisconsin
・ Hilbert–Bernays paradox
・ Hilbert–Bernays provability conditions
・ Hilbert–Burch theorem
・ Hilbert–Huang transform
・ Hilbert–Kunz function
・ Hilbert–Mumford criterion
・ Hilbert–Poincaré series
・ Hilbert–Pólya conjecture
・ Hilbert–Samuel function
・ Hilbert–Schmidt
・ Hilbert–Schmidt integral operator
・ Hilbert–Schmidt operator
・ Hilbert–Schmidt theorem
Hilbert–Smith conjecture
・ Hilbert–Speiser theorem
・ Hilbesheim
・ Hilborn
・ Hilborne Roosevelt
・ Hilborough
・ Hilbourne Frank
・ Hilbram Dunar
・ Hilbrand Boschma
・ Hilbrand J. Groenewold
・ Hilbrand Nawijn
・ Hilbre High School
・ Hilbre Island
・ Hilbre Island Lighthouse
・ Hilbre One Design


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert–Smith conjecture : ウィキペディア英語版
Hilbert–Smith conjecture
In mathematics, the Hilbert–Smith conjecture is concerned with the transformation groups of manifolds; and in particular with the limitations on topological groups ''G'' that can act effectively (faithfully) on a (topological) manifold ''M''. Restricting to ''G'' which are locally compact and have a continuous, faithful group action on ''M'', it states that ''G'' must be a Lie group.
Because of known structural results on ''G'', it is enough to deal with the case where ''G'' is the additive group ''Zp'' of p-adic integers, for some prime number ''p''. An equivalent form of the conjecture is that ''Zp'' has no faithful group action on a topological manifold.
The naming of the conjecture is for David Hilbert, and the American topologist Paul A. Smith. It is considered by some to be a better formulation of Hilbert's fifth problem, than the characterisation in the category of topological groups of the Lie groups often cited as a solution.
In 2013, John Pardon proved the three-dimensional case of the Hilbert–Smith conjecture.
==References==

*
*
*
*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert–Smith conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.